Table C.8-22. Construction and operation project data for Canister Storage Building (HCSB-1).

Generic Information	<u> </u>	Construction Information (continued)	
Description/function and EIS Project	Interim storage of INEEL	Air emissions:	
number:	Calcine	Construction total: (tons/yr)	1,022
EIS alternatives:	Min. INEEL Proc. Alternative	Dust: (tons/yr)	216
Project type or waste stream:	Calcine	Major gas (CO_2) from diesel exhaust:	764
Action type:	New	(tons/yr)	
Structure type:	Concrete and steel buildings	Contaminants ^a from diesel exhaust:	42
Size: (m ²)	11,710	(tons/yr)	
Other features:	None	Effluents:	
(e.g., pits, ponds, power/water/sewer lines)		Sanitary wastewater: (L/yr)	1,943,598
Location:		Solid wastes:	
Inside/outside of fence:	Hanford 200 Area	Construction trash: (m³/yr)	936
Inside/outside of building:		Hazardous/toxic chemicals and wastes	
Construction Information		Generation (used lube oil): (m³/yr)	3
Schedule start/end:		Storage/inventory: (m³/yr)	0.2
Preconstruction:		Pits/ponds created: (m ²)	465 (per CSB)
CSB #1	January 2009-January 2010	Water usage:	
CSB #2	January 2014-January 2015	Dust control: (L/yr)	151,400
CSB #3	January 2019-January 2020	Domestic water: (L/yr)	1,943,598
Construction:		Energy requirements:	
CSB #1	January 2010-January 2012	Electrical: (MWH/yr)	2,850
CSB #2	January 2015-January 2017	Fossil fuel: (L/yr)	354,276
CSB #3	January 2020-January 2022	Operational Information	
Number of workers: (new/existing)	79/0 each yr	Schedule start/end:	
Nonradiation	79	CSB #1	January 2012-Apr 2030
Number of radiation workers	None	CSB #2	January 2017-April 2030
Average annual worker radiation dose	None	CSB #3	January 2022-April 2030
(rem/yr)		Number of workers each year of operation	
Transportation mileage		(new/existing)	
Truck: (km/yr)	200,000	Total:	9/0
Rail:	0	Radiation workers:	9/0
Employees: (km/yr)	2,130,074	Average annual worker radiation dose:	
Heavy equipment:	_	(person-rem/yr)	1.8
Equipment used	Excavator, grader, crane,	Transportation mileage	_
	delivery trucks	Truck:	0
Hours of operation: (hr/yr)	15,600	Rail:	0
Acres disturbed (per CSB)		Employees: (km/yr)	242,667
New (acres)	15	Heavy equipment:	Canister transporter,
Previous (acres)	None		occasional delivery trucks
Revegetated (acres)	None	Hours of operation: (hrs/yr)	5,840
		Air emissions:	202
		Fossil fuel emissions: (tons/yr)	302

Table C.8-22. (Continued).

(
Operational Information (continued)			
Effluents:		Pits/ponds used: (m ²)	None
Sanitary wastewater: (L/yr)	221,423	Water usage	
Solid wastes:		Process water: (L/yr)	0
Sanitary/industrial trash: (m³/yr)	50	Domestic water: (L/yr)	221,423
Radioactive wastes:	None	Energy requirements	
Hazardous/toxic chemicals and wastes		Electrical: (MWH/yr)	44
Generation: (m³/yr)	1.11	Fossil fuel: (L/yr)	132,626

a. CO, NO_x, SO₂, hydrocarbons, particulates.

Table C.8-23. Decontamination and decommissioning project data for Canister Storage Building (HCSB-1).

Decontamination and Decommissioning (D&D) Information			
Schedule start/end:	June 2030-June 2031	Air emissions:	
Number of workers each year of D&D		Dust: (tons/yr)	0
(new/existing):	84/0 per year	Gases (CO ₂): (tons/yr)	2,445
Number of radiation workers (D&D):	None	Contaminants ^a : (tons/yr)	134
Average annual worker radiation dose:	0 (person-rem/yr)	Effluents:	
Transportation mileage		Non-radioactive sanitary wastewater (L/yr)	2,066,610
Truck: (km/yr)	390,000	Solid wastes:	
Rail:	0	Non-radioactive (industrial): (m³/yr)	996
Employee: (km/yr)	2,264,889	Hazardous/toxic chemicals and wastes	
Heavy equipment:		Generation (used lube oil): (m³/yr)	9.45
Equipment used:	Mobile cranes, roll-off trucks,	Storage/inventory: (m ³ /yr)	0.73
	dozers, loaders	Pits/Ponds created:	None
Hours of operation: (hr/yr)	49,920	Water usage	
Acres disturbed:		Process water: (L/yr)	151,400
New (acres)	None	Domestic water: (L/yr)	2,066,610
Previous (acres)	None	Energy requirements	-
Revegetated (acres)	45	Electrical: (MWH/yr)	1,500
		Fossil fuel: (L/yr)	1,133,683

a. CO, NO_x, SO₂, hydrocarbons.

Table C.8-24. Construction and opera	tion project data for the Calcine I		
Generic Information		Construction Information (continued)	
Description/function and EIS project	Facility to unload INEEL	Major gas (CO ₂) from diesel exhaust:	25
number:	calcine containing canisters and	(tons/yr)	
	separate waste into HAW and	Contaminants ^a : (tons/yr)	1.4
	LAW	Effluents:	
EIS alternatives:	Minimum INEEL Processing	Sanitary wastewater: (L/yr)	7,035,679
	Alternative	Solid wastes:	
Project type or waste stream:	INEEL Aluminum and	Construction trash: (m³/yr)	3,384
	Zirconium Calcine and SBW	Hazardous/toxic chemicals and wastes	
	Ion Exchange Resin	Generation (used lube oil): (m³/yr)	0.39
Action type:	New	Storage/inventory (m³/yr)	0.36
Structure type:	Concrete and steel building	Pits/ponds created (m ²)	465
Size: (m ²)	3,761	Water usage	
Other features (e.g., pits, ponds,	Extension to existing	Dust control (L/yr)	151,400
power/water/sewer lines)	underground utilities	Domestic water (L/yr)	7,035,679
Location:	Hanford 200 Area	Energy requirements	
Construction Information		Electrical: (MWH/yr)	208
Schedule start/end:		Fossil fuel: (L/yr)	47,237
Construction:	Dec. 2023 - Dec. 2027	Operational Information	-
Number of workers: (new/existing)		Schedule start/end:	February 2028-April 2030
Nonradiation	286/0 each yr	Number of workers each year of operation	
Radiation workers (construction)	None	(new/existing)	
Average annual worker radiation dose	None	Operations	15/0
(rem/yr)		Maintenance	6/0
Transportation mileage		Support	2/0
Truck: (km/yr)	67,500	Total	23/0
Rail:	0	Number of radiation workers	23 (included in above total)
Employees: (km/yr)	7,711,407	Average annual worker radiation dose	4.6 (200 millirem/worker)
Heavy equipment:		(person-rem/yr)	
Equipment used	Excavators, graders, cranes,	Transportation mileage	
	Concrete trucks, material	Truck: (km/yr)	662,990
	delivery trucks, and water	Rail: (km/yr)	0
	trucks	Employees: (km/yr)	620,148
Hours of operation (hr/yr)	2,080	Heavy equipment	
Acres disturbed and duration:	August 2010 – December 2037	Hours of operation (hrs/yr)	3,650
New (acres)	6.80	Air emissions	
Previous (acres)	None	CO ₂ from diesel exhaust (tons/yr)	3,431
Revegetated (acres)	None	Contaminants ^a : (tons/yr)	187
Air emissions:		Process radioactive air emissions: (Ci/yr)	1.99×10 ⁻⁴
Construction total: (tons/yr)	83	Other oxide air emissions: (kg/yr)	_
Dust: (tons/yr)	56	B_2O_3	6.52×10^{-7}
		BaO	2.44×10^{-8}

Table C.8-24. (Continued).

Operational Information (continued)			
CaO	1.12×10 ⁻⁶	Hazardous/toxic chemicals and wastes:	
CdO	2.40×10^{-7}	Generation (hazardous wastes) (m³/yr)	1
Cr_2O_3	9.41×10^{-8}	Process chemicals (nitric acid, sodium	
Fe_2O_3	1.50×10^{-7}	hydroxide): (m³/yr)	31,371
MgCO ₃	6.79×10^{-7}	Pits/ponds used:	None
MnO	3.48×10^{-9}	Water usage:	
Effluents		Process water: (L/yr)	26,750,511
Sanitary wastewater (L/yr)	565,858	Domestic water: (L/yr)	565,858
Solid wastes		Energy requirements	
Sanitary/industrial trash (m³/yr)	127	Electrical: (MWH/yr)	13,615
Process output		Equivalent fuel oil to generate required	
Dissolved calcine to TWRS treatment		steam: (L/yr)	670,197
system: (L/yr)	33,288,889	Equipment/vehicle fuel: (L/yr)	82,892
Radioactive wastes		Total fossil fuel: (L/yr)	753,089
HEPA filters: (m³/yr)	8		
Misc. radioactive wastes: (m³/yr)	34		
Total: (m³/yr)	42		

a. CO, NO_x, SO₂, hydrocarbons.

Table C.8-25. Decontamination and decommissioning project data for the Calcine Dissolution Facility (CALDIS-001).

Decontamination and Decommissioning	(D&D) Information	<u> </u>	
Schedule start/end:	April 2030-April 2032	Effluents:	
Number of workers each year of D&D		Radioactive:	
(new/existing)	312/0 each yr	Spent decontamination solution: (L/yr)	295,264
Number of radiation workers (D&D)	312	(Ci/yr)	132,860
Average annual worker radiation dose	62 (200 mrem/worker)	Non-radioactive:	
(rem/yr)		Sanitary wastewater: (L/yr)	7,669, 763
Transportation mileage		Radioactive wastes	
Truck: (km/yr)	42,500	Radioactive waste quantity ^b : (m ³ /yr)	3,679
Rail: (km/yr)	0	(Ci/yr)	37
Employees: (km/yr)	8,405,631	Solid waste	
Heavy equipment:		Industrial trash: (m³/yr)	3,689
Equipment used	Dozers, dump trucks, loaders,	Hazardous/toxic chemicals and wastes	
	cranes, concrete trucks	Generation (used lube oil): (L/yr)	394
Hours of operations (all heavy equip.)	2,080	Storage/inventory: (m³/yr)	0.02
(hr/yr)		Pits/ponds created: (m ²)	None
Acres disturbed		Water usage	
New (acres)	None	Dust control water: (L/yr)	151,400
Previous (acres)	None	Process water: (L/yr)	295,264
Revegetated (acres)	6.80	Domestic water: (L/yr)	7,669,763
Air emissions		Total water: (L/yr)	8,116,427
Non-radioactive:		Source of water:	Columbia River
Gases (CO ₂) (tons/yr)	51	Energy requirements	
Contaminants ^a : (tons/yr)	2.78	Electrical: (MWh/yr)	156
Radioactive		Fossil fuel: (L/yr)	47,237
HEPA filtered off-gas: (Ci/yr)	0.80		

a. CO, particulates, NO_x, SO₂, hydrocarbons.

b. All tanks, pipes, vessels, pumps, filters and other equipment in immediate contact with process stream.

Table C.8-26. Project data for Calcine Separations/Vitrification (CALVIT-001).

Separation and Vitrification of HAW and LAW component at Hanford Treatment Facilities Min. INEEL Proc. Alternative INEEL Aluminum and Zirconium Calcine and SBW Ion Exchange Resin Existing facility None	LAW Component Chemicals (g/sec) SO ₂ NO ₂ CdO Cr ₂ O ₃ Cl ₂ B ₂ O ₃ CaO	4.98×10^{-1} 5.63×10^{-1} 3.80×10^{-12} 1.21×10^{-12} 8.02×10^{-4} 2.90×10^{-11}
Hanford Treatment Facilities Min. INEEL Proc. Alternative INEEL Aluminum and Zirconium Calcine and SBW Ion Exchange Resin Existing facility	SO_2 NO_2 CdO Cr_2O_3 Cl_2 B_2O_3	5.63×10^{-1} 3.80×10^{-12} 1.21×10^{-12} 8.02×10^{-4} 2.90×10^{-11}
Min. INEEL Proc. Alternative INEEL Aluminum and Zirconium Calcine and SBW Ion Exchange Resin Existing facility	$\begin{array}{c} NO_2\\ CdO\\ Cr_2O_3\\ Cl_2\\ B_2O_3 \end{array}$	5.63×10^{-1} 3.80×10^{-12} 1.21×10^{-12} 8.02×10^{-4} 2.90×10^{-11}
INEEL Aluminum and Zirconium Calcine and SBW Ion Exchange Resin Existing facility	$\begin{array}{c} \text{CdO} \\ \text{Cr}_2\text{O}_3 \\ \text{Cl}_2 \\ \text{B}_2\text{O}_3 \end{array}$	3.80×10^{-12} 1.21×10^{-12} 8.02×10^{-4} 2.90×10^{-11}
Zirconium Calcine and SBW Ion Exchange Resin Existing facility	Cr_2O_3 Cl_2 B_2O_3	1.21×10^{-12} 8.02×10^{-4} 2.90×10^{-11}
Ion Exchange Resin Existing facility	$Cl_2 B_2O_3$	8.02×10^{-4} 2.90×10^{-11}
Existing facility	B_2O_3	2.90×10^{-11}
T		
None	CaO	10
None		7.52×10^{-10}
	Fe_2O_3	2.99×10^{-12}
	UO ₂	7.04×10^{-15}
Hanford 200 Area	BaO	3.94×10^{-13}
Inside	Radionuclides (Ci/yr)	
Inside	Cs-137	1.79×10^{-7}
	Sr-90	4.62×10^{-7}
January 2029-April 2030	Y-90	4.62×10^{-7}
To the state of th	Tc-99	3.98×10^{-9}
708/0 each yr	Am-241	1.84×10^{-8}
657/0 each yr	Pu-238	1.14×10^{-8}
131	Pu-239 and 240	4.16×10^{-10}
(200 millirem/worker)	Pu-241	1.69×10 ⁻⁹
	Effluents	
0	Sanitary wastewater: (L/yr)	17,418,570
	Solid wastes	
250,000	Sanitary/industrial trash: (m³/yr)	3,925
283,000	Radioactive wastes	
19,089,778	Vitrified waste output:	
		10,417
		4,019
		530
2.36×10 ⁻⁵		453
	,	•
		8
		23
		966
		966
	i :	0
	Inside Inside Inside January 2029-April 2030 708/0 each yr 657/0 each yr 131 (200 millirem/worker)	Hanford 200 Area Inside Inside Inside Cs-137 Sr-90

Operational Information (continued)			
Pits/ponds used	None	Energy requirements	
Water usage		Electrical: (MWH/yr)	642,857
Process (HAW and LAW processing):	1,826,200,000	Fossil fuel: (L/yr)	4,140,000
(L/yr)			
Domestic (HAW and LAW processing):	17,418,570		
(L/yr)			

DOE/EIS-0287D